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Recent advances have shown that the empirical correlation matrices of dynamical systems can be modeled
as random matrices, for most part, chosen from an appropriate ensemble of the random matrix theory(RMT).
In this work, we study certain limiting cases where this approach could potentially break down. Using a
combination of analytical and numerical tools, we especially study the eigenvalue density and its spacing
distribution. We show that the correlation matrices obtained from multivariate spatiotemporal timeseries, in a
regime of spatiotemporal chaos, lead to strong deviations from RMT. We illustrate the results with time-series
data drawn from coupled map lattices. We also explore the transition to the RMT regime from the limiting
cases.
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I. INTRODUCTION

The study of spatial correlations in spatially extended,
complex systems such as economics, weather, social sci-
ences, etc., provides us with deeper insight into information
and structure generated by their dynamics. However, in
many of the most interesting casesab initio models are cur-
rently not established, so that theoretical studies of correla-
tions cannot be performed. The alternative is to investigate
the properties of observed time-series data, including nu-
merical estimates of spatial correlations. The evaluation of
such numerical results requires the existence of a paradigm,
which gives the framework for their interpretation. Such a
paradigm is supplied by random matrix theory(RMT) [1],
which was originally developed for the interpretation of
nuclear spectra and later on gained new relevance for the
understanding of quantum systems whose classical counter-
part is chaotic. Recently, it was reported from several empiri-
cal studies that the spectra of correlation matrices, con-
structed from multivariate time-series data, can be modeled
as random matrices chosen from an appropriate ensemble of
the random matrix theory. Such results were demonstrated to
hold in several interesting practical cases such as stock-
market fluctuations, ECG data, atmospheric time series, and
internet interconnections[2]. These findings testify the uni-
versal nature of spectral fluctuations, which underlie the
RMT line of thinking, in the correlation matrix spectra.

The interpretation of the spectra of empirical correlation
matrices requires more care than of corresponding matrices
from, e.g., quantum chaos. In both cases, we would like to
distinguish between system specific signatures and universal
features. The former express themselves in the smoothed
level density, whereas the latter are represented by the fluc-
tuations around this smooth curve. In time-series analysis,
the matrix elements are subject to uncertainty such as mea-
surement noise on the time-series data, but also statistical
fluctuations due to finite sample effects. When characterizing
time-series data in terms of RMT, we do not want to charac-
terize these trivial sources of fluctuations which are present
on every data set, but we aim at the extraction of features
which would be shared by an infinite amount of data without
measurement noise. The eigenfunctions of the correlation

matrices constructed from such empirical time series carry
the information contained in the original time-series data in a
graded manner and provide a compact representation for it.
Thus, by applying an RMT based approach, we can identify
nonrandom components of the correlation matrix spectra as
deviations from RMT predictions[3]. In terms of applica-
tions, RMT provides another criterion to distinguish between
signal and noise in correlation matrix spectra.

Even though the previous studies of empirical time series
confirm the RMT-like universal fluctuations in correlation
matrix spectra, there are evident and relevant limiting cases
that are not yet explored in this context. For instance, a mul-
tivariate data set that is perfectly correlated will not display
RMT-like spectral fluctuations. This question can be treated
more broadly in terms of eigenvalue spectral fluctuation
properties. Within the class of real symmetric matrices, the
eigenvalues of correlation matrices can display one of the
following properties: (i) perfectly correlated eigenvalues,
leading to equally spaced eigenvalues,(ii ) completely uncor-
related eigenvalues and(iii ) eigenvalues displaying various
degrees of correlation, called the “level repulsion” in RMT
language. All the studies reported so far of empirical time-
series data displaying RMT-like spectral fluctuations, fall in
the category(iii ) above. The first two cases[(i) and (ii )]
could be thought of as limiting cases where RMT based ar-
guments could break down. It is in fact known from quantum
chaos literature that the distribution of random level spacing,
coming from completely uncorrelated eigenvalues, cannot be
described by the standard Wigner-Dyson RMT approach but
is known to be Poisson distributed from semiclassical con-
siderations[4]. As some properties of the time-series data
change, it is possible to go from a limiting case to the RMT
domain characterized by level repulsion or vice versa.

In this paper, we will examine the limiting case corre-
sponding to perfectly correlated eigenvalues of the correla-
tion matrix and explore under what circumstances transition
to RMT-like spectral fluctuations take place. In answering
this question, we are also led to another interesting problem
of the spectral signature of spatiotemporal chaos. In all the
previous works that consider spectra of correlation matrices
from empirical time series[2], it is not known with certainty
if those data are chaotic or not. Thus, the spectral manifes-
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tations of spatiotemporal chaos remain relatively unexplored.
To study both these questions, we assume simple models for
correlation matrices which can be manipulated analytically
to a certain extent. Further, we use coupled map lattices
(CML) that have emerged as one of the paradigms of spa-
tiotemporal dynamics, to generate multivariate time series
with desired properties. Thus, this effort represents an at-
tempt to understand the conditions under which RMT models
for correlation matrix spectra will break down and to look
for any alternative ways to understand such spectra. On the
other hand, various dynamical regimes of CMLs might be
distinguishable in terms of the properties of their correlation
matrix spectra. This will contribute to the understanding the
spatiotemporal dynamical features in terms of its correlation
matrix spectra. In the following section, we will introduce
the coupled map lattice and the correlation matrix formalism.

II. CORRELATIONS IN COUPLED MAP LATTICES

A. Correlation matrix

Consider a time series of the formz8sx,td, where x
=1,2, ... ,n andt=1,2, ... ,p denote the discretized space and
time, respectively. In this, the time series at every spatial
point is treated as a different variable. We define the normal-
ized variable as

zsx,td =
z8sx,td − kz8sxdl

ssxd
, s1d

where the bracketsk·l represent temporal averages andssxd
the standard deviation ofz8 at positionx. Then, the equal-
time cross-correlation matrix that represents the spatial cor-
relations can be written as

Sx,x8 = kzsx,tdzsx8,tdl, x,x8 = 1,2, ... ,n. s2d

The correlation matrix is symmetric by construction. In ad-
dition, a large class of processes are translationally invariant
and the correlation matrix can contain that additional sym-
metry, too. We will use this property for our correlation
models in the context of CML. In time-series analysis, the
averagesk·l have to be replaced by estimates obtained from
finite samples. As usual, we will use the maximum likeli-
hood estimates,kastdl< 1/ pot=1

p astd. These estimates con-
tain statistical uncertainty, which disappears forp→`. Ide-
ally we requirep@n to have reasonably correct correlation
estimates.

B. Coupled map lattices

The concept of CML was introduced as a simple model
capable of displaying complex dynamical behavior generic
to many spatiotemporal systems and has been extensively
studied in the last 20 years[5]. CMLs have discrete time and
space, labeled byt and i, respectively, in Eq.(3), but a con-
tinuous state space. Many spatiotemporal phenomena could
be modeled by CML dynamics[6]. In this work, we use
CMLs as a source of multivariate spatiotemporal data with
required properties. They can be easily created numerically
by simple iteration. By a change of system parameters we

can tune the dynamics for desired spatial correlation proper-
ties, many of which have already been studied and reported
[7]. We consider the class of diffusively coupled map lattices
in one dimension with sitesi =1,2, ... ,n8 of the form

yt+1
i = s1 − edfsyt

id +
e

2
ffsyt

i+1d + fsyt
i−1dg, s3d

wherefsyd=1−ay2 is the local logistic map controlled by the
parametera. The parametere is a measure of coupling be-
tween nearest-neighbor lattice sites. We choose periodic
boundary conditions,xsn+1d=xs1d. In order to eliminate
boundary effects from our correlation matrices, we construct
them from the sublatticexP f20,n8−20g. If the spatial two-
point correlations decay very fast, a lattice point 20 sites
away from the boundary can be supposed to be insensitive
to the boundary conditions. For the numerical computa-
tions reported in this paper, the CML withn8=500 and
hence a sublattice sizen=460 was chosen and iterated,
starting from random initial conditions, forp=53107 time
steps, after discarding 105 transient iterates.

As the parametersa ande are varied, the spatiotemporal
map displays various dynamical features such as frozen ran-
dom patterns, pattern selection, space-time intermittency, and
spatiotemporal chaos[7]. Since we intend to study limiting
cases of strongly diagonally dominant correlation matrices,
the interesting CML dynamics is found in the regime of spa-
tiotemporal chaos, where correlations are known to decay
rather quickly as a function lattice sites.

III. CORRELATION MATRIX MODEL

A. Tridiagonal matrix model

By definition of uncorrelatedness, the correlation matrix
of a sequence of uncorrelated random variables is a diagonal
matrix [8]. Here, we consider dynamics of CML correspond-
ing to spatiotemporal chaotic regime where the spatial corre-
lation decays fairly sharply ensuring that the correlation ma-
trix is strongly diagonally dominant. In this context, we get
for the empirical correlation matrix, in the limit ast→`, a
symmetric banded matrix whose bandwidth depends on how
quickly the spatial correlations decay to zero.

First, we consider the simplest tridiagonal matrix model
corresponding to extremely fast decay of correlations.
Hence, the correlation matrix of ordern−1 has the following
form

X =1
1 b 0 0 ¯

b 1 b 0 ¯

0 b 1 b ¯

¯ ¯ ¯ ¯ ¯

2 . s4d

Since a correlation matrix is a positive semidefinite matrix, it
is required thatb,1/2 in order forX to be a proper model
of a correlation matrix.

The eigenvalues ofX are given by

l j
o = 1 + 2b coss jp/nd, j = 1,2, ... ,sn − 1d. s5d

The eigenvectors are
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v j
k = sinskjp/nd, k = 1,2, ... ,sn − 1d,

wherek labels the eigenvector components. As shown in Fig.
1, the spectrum of a full correlation matrix from CML dy-
namics for very small coupling strengthe and large param-
eter a can be approximately modeled by this relation. This
figure illustrates that the full correlation matrix is effectively
tridiagonal in nature, where the particular structure ofX re-
flects the translational invariance of the CML dynamics. The
disagreement between the numerical CML eigenvalues and
Eq. s5d has two sources, namely, the finite-time series length
leading to statistical fluctuations of the CML matrix ele-
ments, and the fact that the correlation matrix from CML is
not exactly tridiagonal.

B. Perturbed matrix model

In order to analyze a more realistic situation, we intend to
allow more off-diagonal entries. We hence perturb the tridi-
agonal matrix of ordern−1 by adding four more off diago-
nals, such that with 1ùb,e1,e2,e3,e4ù0:

Xp =1
1 b e1 e2 e3 e4 0 ¯

b 1 b e1 e2 e3 e4 ¯

e1 b 1 b e1 e2 e3 ¯

e2 e1 b 1 b ¯ ¯ ¯

e3 e2 e1 ¯ ¯ ¯ ¯ ¯

2 . s6d

This is just the banded version of the well known symmetric
Toeplitz matrix, which arises as the covariance matrix in the
study of stationary and translationally invariant stochastic
processes such as moving average processes, autoregressive
processes, and harmonic processesf8g. This matrix structure
is also reminiscent of a variant of the one dimensional tight
binding lattice modelssTBMd without disorder in condensed
matter physicsf9g. In typical tight binding models, often
nearest neighbor hopping is considered. This is equivalent to
the tridiagonal model, essentially a symmetric tridiagonal

Toeplitz matrix, given in Eq.s4d. But, Xp is the Hamiltonian
for TBMs without disorder that account for longer range site
to site interactions. Later we will see that the spectral fluc-
tuation properties ofXp strongly resemble those of one-
dimentional s1Dd quantum systems. To the best of our
knowledge, no closed form solutions are known for the ei-
genvalues of symmetric Toeplitz matrix, beyond those with
tridiagonal structuref10g. To estimate the eigenvalues, we
use the standard Rayleigh-Schrödinger perturbation theory in
quantum mechanicsf11g in a straightforward way to obtain
the perturbed eigenvalues. The tridiagonal matrixX is taken
as the unperturbed “system” whose spectrum is exactly
known. The perturbation matrixV is similar toXp but with
its principal tridiagonal entries set to zero, such thatXp=X
+V. Then the perturbed eigenvalues, to first order, can be
obtained from

l j
1 =

kv j
kuV uv j

kl
Cj

, s7d

whereCj is the normalization constant

Cj =
n − 1

2
−

cos jp sinfsn − 1dug
2 sin u

. s8d

Here and in the following we usesu= jp /nd and cosjp
=s−1d j. The perturbed eigenvalues, to first order, are given
by

l j
1 = l j

o +
e1

Cj
Fsn − 3dcos 2u −

s− id jsinfsn − 3dug
sin u

G
+

e2

Cj
Fsn − 4dcos 3u −

s− id jsinsn − 4du
sin u

G
+

e3

Cj
Fsn − 5dcos 4u −

s− id jsinsn − 5du
sin u

G
+

e4

Cj
Fsn − 6dcos 5u −

s− id jsinsn − 6du
sin u

G . s9d

Note that ase1,e2,e3,e4→0, we recover the correct unper-
turbed eigenvalues. Another important condition is that
b,e1,e2,e3,e4!1, in order for the matrix to be in the pertur-
bative regime. Second, there are further conditions on these
parameters needed to guarantee the positive semidefiniteness
of the correlation matrix. The fact that thej th perturbed ei-
genvalue depends on a single integerj , apart from other
quantities independent ofj , gives the clue that the system
represented by the matrix in Eq.s6d is, in a sense, similar to
one-dimensional problems like the harmonic oscillator in
quantum mechanics, as far as the spectral properties are con-
cerned. Later we will see that it helps to keep this analogy in
mind since the spectral fluctuation properties ofXp strongly
resemble those of 1D quantum systems.

It is straightforward to obtain the asymptotic form for the
perturbed eigenvalues. They are, forn@1,

FIG. 1. Numerically determined eigenvalues of the correlation
matrix for CML time-series data witha=2.00 ande=0.08 (dashed
curve). The solid curve is the analytical result of the tridiagonal
model, Eq.(5) with b taken as the average of the first off-diagonal
elements of the CML matrix;b=0.022.
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l j
1 = l j

o + 2 o
k=1

4

ek cossk + 1du. s10d

In the regime of strong spatiotemporal chaos of CML, this
relation provides an estimate for the eigenvalues of large
correlation matrices. In Figs. 2 and 3sad, we show how well
the analytical result in Eq.s10d fits the numerically calcu-
lated eigenvalues of full correlation matrix with specified
CML parameters. We see that because of the effectively
banded nature of the correlation matrix, the agreement with
Eq. s10d is very good. The percentage error, shown in Figs. 2
and 3sbd, between numerical eigenvalues and those given by
Eq. s10d shows that the matrix in Eq.s6d is a fairly good
approximation to the effectively banded correlation matrix,
as far as the eigenvalues are concerned.

In many cases where correlation matrices are constructed
from experimental time series, the spectrum is characterized
by a few dominant and a large number of less-dominant ei-
genvalues. In contrast to that, the eigenvalue curves in Figs.
2 and 3 do not have this feature, indicating that the spectral
properties could be different from that of a generic correla-
tion matrix. It is important to note that even though Eq.(10)
is strictly valid for correlations ast→`, we see that it is
reasonably accurate even for correlations estimated from
finite-time CML dynamics. However, as we will see later, the
finite-time estimate of correlations lead to transitions in spec-
tral statistics, especially in case of spacing distributions.

IV. EIGENVALUE DENSITY

We will look at two quantities that have been studied in
the context of applying RMT methods to time-series corre-
lations. The first of them is the eigenvalue(level) density, the
second the level spacing distribution.

Let Nsld be the integrated eigenvalue density which gives
the number of eigenvalues less than a given valuel. Then,
the eigenvalue or level density is given by

dsld =
dNsld

dl
. s11d

This can be obtained assuming random correlation matrix
f14g and is found to be in good agreement with the empirical
time-series data from stock market fluctuationsf13g.

A. Tridiagonal case

In this case, the eigenvalue density can be exactly worked
out as follows. From Eq.(5) we obtain

Nsld =
n

p
cos−1Sl − 1

2b
D . s12d

Then, the normalized level density is given by

dtsld =
1

2pbÎ1 −Sl − 1

2b
D2

, s13d

where 1−2b,l,1+2b, where the full interval is only ex-
plored if the rank of matrixn→` fsee Eq.s5dg. Note that the
level density has peaks of equal magnitude at both the ends
of the spectrum. Figure 4 shows that the analytical result in
Eq. s13d is a fairly good approximation to the numerically
obtained eigenvalue density of the full correlation matrix for
CML data. The discrepancy between the two can be attrib-
uted to the effect of nonzero elements in the full correlation
matrix, as opposed to tridiagonal matrix assumed by the
theory, and to the finite-time estimate of correlations. The
maximal sl+d and minimalsl−d eigenvalue,l± <1±2b, for
largen, agree well with the range of eigenvalues which we
find for the chosen CML datab=0.0775, as one canvisually
verify from Fig. 4.

FIG. 2. (a) Numerically obtained eigenvalues of a correlation
matrix for a CML with a=1.98 ande=0.08 (dashed line, almost
invisible). Solid curve: analytical eigenvalues in Eq.(10) with b
=0.127,e1=0.025,e2=0.0023 of the matrixXp, where the numeri-
cal values of the parameters were chosen according to the CML
matrix. (b) Percentage error,Dl j =dl j 3100/l j between numerical
and analytical eigenvalues.

FIG. 3. The same as Fig. 2 for different CML parameters,a
=1.95 ande=0.2.
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B. Beyond tridiagonal: Perturbed matrix

For a general perturbed matrix, it is not straightforward to
obtain the integrated level density exactly. However, under
certain constraints and approximations, we can obtain a
closed formula. Further in this direction, we treat the special
case, namely, geometric decay of correlations away from the
principal diagonal of the correlation matrix.

1. Geometric decay of correlations

We start with Eq.(10) and assume a geometric decay of
correlations so that

em < bm+1, m= 1, ... ,4. s14d

By the transformationbm+1=elog bm+1
, we see that this rep-

resents an exponentially decaying case. Invoking the fact
that em!1, we approximatel j from Eq. s10d in following
way

l j < 1 + 2o
m=1

`

bm cosmu. s15d

Note that, for convenience, we have dropped the superscript
on l. The summation on right-hand side yieldsf12g

l j <
1 − b2

1 − 2b cosu + b2 . s16d

Then, under this approximation, the integrated level density
is given by

Nsld =
n

p
cos−1Slsb2 + 1d + b2 − 1

2bl
D . s17d

Now the normalized density of states can be determined to
be

dpsld =
1

2p b l2

1 − b2

Î1 −
s− 1 +b2 + s1 + b2d ld2

4 b2 l2

.

s18d

We compare this result with the numerical level density from
the full correlation matrix spectra of CML fora=1.98, e
=0.08. For this case, we haveb=0.128,e1=0.025,e2
=0.0023,e3=0.0008, which roughly follow the assumption
made in Eq.s14d. As Fig. 5sbd shows, the agreement is
fairly good, justifying the assumptions made in obtaining
this relation.

We notice that level density and is peaked at the edges of
the spectrum though the magnitudes of peaks at both the
ends of the spectrum are not equal. The numerical result
displayed in Fig. 5(a) for CML data with larger nearest-
neighbor coupling has a qualitatively similar level density as
the one predicted by Eq.(18). A quantitative comparison
with the analytical result is not possible because the correla-
tion coefficients do not decay in any obvious geometric
sense, i.e., grossly violate the assumption in Eq.(14). It is
clear that as the coupling strength in CML is increased, the
lattice sites get strongly coupled which is reflected in the
correlation coefficients that do not decay fast enough. Thus,
the effective banded nature of correlation matrix is lost.
Since numerically we have only the finite-time estimates of
correlations, we tend, at least qualitatively, towards the limit
of random matrix level density. This is evident from the fact
that the asymmetry of the peaks in the level density gets
further pronounced as coupling strength is increased(com-
pare the Figs. 4 and 5. We recall that the random matrix level
density for p.n has a pronounced peak only at the lower
end of the spectrum[14].

2. Eigenvalue bounds

From the integrated level density in Eq.(17), we can draw
an important, though approximate, conclusion on the bounds
of the eigenvalues of the correlation matrix under consider-
ation. Forn@1, when the condition

FIG. 4. Level density of spectra from the full correlation matrix
for CML data with a=2.0 ande=0.05. The dotted curve is the
numerical result, while the solid curve represents Eq.(13). FIG. 5. Level density of the correlation matrix for CML with(a)

a=1.95 ande=0.2 (b) a=1.98 ande=0.08. The solid curve in(b) is
the analytical level density obtained from Eq.(18).
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Slsb2 + 1d + b2 − 1

2bl
D < ± 1 s19d

is met, then approximately the integrated level density attains
extremal values. We obtain the following relation for maxi-
mum sl+d and minimumsl−d eigenvalue

l± =
1 − b2

s1 ± bd2 , s20d

which implies the interesting result that

l+ <
1

l−
. s21d

The correlation matrix spectra for CML lattice data witha
=1.98 ande=0.08have maximal and minimal eigenvalues
to be 1.3097 and 0.7904, approximately fulfilling the
above relation. This can also be verified in Fig. 5sbd. This
line of analysis allows us to understand the level density
of correlation matrices with rapidly decaying correlations.
Unlike the spacing distribution to be studied in the follow-
ing section, the eigenvalue density is not, in general, ex-
pected to display universal behavior. But we expect our
approach and the eigenvalue density relations to hold
good for the case of rapidly falling correlations, which is
a general feature of spatiotemporal chaotic systems.

V. SPACING DISTRIBUTION

In this section we investigate the nearest-neighbor eigen-
value spacing distribution, widely studied in the context of
random matrix theory[1]. The eigenvalue spacingss are de-
fined as the differences between the successive eigenvalues,
si =Ei+1−Ei, whereEi is the unfolded eigenvalue. The un-
folding procedure expresses the spacings in terms of local
mean spacing. The spectrum is unfolded in order to have a
uniform scale leading to mean spacing of unity so that the
spacing distribution from various systems can be compared
on an equal footing.

To unfold the spectrum, we note that the integrated level
density is a sum of average part plus an oscillating part,
written as,Nsld;Navgsld+Noscsld. A similar expression can
be written for the level densitydsld, too. Then, the unfolded
levels are obtained asEi =Navgslid. In fact, for a general
spectrum which is a function of a single integer(“quantum
number”) and lù0, the exact average level density for the
nondegenerate case can be formally written down as[15]

davgsld = uN8sldu. s22d

Thus, we note that Eq.s17d actually is the average part of the
integrated level density. Since we have the analytical form of
the average integrated level densityNsld, we can unfold the
spectrum analytically.

Our analytical framework does not account for the finite-
time estimate of correlations. The statistical fluctuations
break the translational invariance, to smaller or larger ex-
tents, in practice. Second, inspite of spatiotemporal chaos,
the spatial correlations in CML do not monotonously decay
to zero. Thus, the numerical spectra always contain such ef-

fects that arise from dynamics of “real” systems. Our work
with CML indicates, at a qualitative level, that the spacing
distribution is more sensitive to eigenvalue perturbations
than the level density. Hence, we compare the spacing distri-
bution results with those determined numerically from CML
dynamics for(i) a truncated correlation matrix in which cer-
tain effective number of off-diagonal elements are retained
and the rest set to zero;(ii ) the full correlation matrix. The
spectra of the truncated correlation matrices will allow us to
verify the ideally expected spacing distribution while the full
matrix will illustrate the real scenario.

A. Tridiagonal matrix

Taking the cue from the analogy of the correlation matrix
with one-dimensional quantum systems, we expect the spec-
trum to display constant level spacing and its distribution to
be strongly peaked ats=1. In our approximate scheme, this
result arises easily, since the average part of integrated level
density is,Navgsl j

od=Nsl j
od. The unfolded spectrum then fol-

lows from Eq.(12),

Ej = Navgsl j
od = Nsl j

od = j , j = 1,2, ... ,sn − 1d. s23d

Thus, the spacings are uniformly unity and the spectrum will
have spacing distribution peaked ats=1. The system does
not show any fluctuation in eigenvalue spacings. When nu-
merically performed with CML data, we obtain a pro-
nounced peak ats=1.0.

B. Perturbed matrix

1. Truncated correlation matrix

In this case, we are not able to perform the unfolding
analytically for a general case. However, for the special as-
sumption made in Eq.(14), the unfolding procedure is car-
ried out by substituting the eigenvaluel in Eq. (17) from Eq.
(16). Then, we obtain from simple manipulation

Ej = Nsl jd =
nu

p
= j . s24d

Thus, for the case of perturbed matrix that follow the as-
sumption in Eq.s14d, the spacing distribution is peaked at
s=1. The numerical results indicate that this is true in gen-
eral, irrespective of the nature of correlations decay. First, we
consider the CML correlation matrix spectra fora=1.98 and
e=0.08, where we have retained five principal off-
diagonals and set the rest to zero since the magnitude of
these elements was less than 10−5. This truncation is done
to enforce “ideal” conditions, that closely approximate the
assumptions made to obtain theoretical results. For the
empirical correlation matrix from CML, we unfold its
spectrum and determine the spacing distribution numeri-
cally.

As shown in Fig. 6, the spectrum in this case displays a
strong peak ats=1 quite in agreement with the analysis done
above. We also note that the effect of finite-time estimation
of correlations manifests itself in the form of spread of spac-
ing distribution arounds=1. Thus, this spacing distribution
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could be thought of as the counterpart of “integrable” limit
for correlation matrices. This is also characteristic of the
spectra of one dimensional quantum systems that are ex-
tremely rigid. This is known to occur in a many body system
of bosons described byk-body interactions and is understood
in the framework of embedded Gaussian ensembles[16].

C. Full correlation matrix

The CML correlation matrix estimated from finite-time
dynamics can also be thought of as a case of translational
invariance being broken. Thus, the spacing distribution of
full correlation matrix could behave differently from the
ideal cases we consider to obtain analytical results. We show
from numerical spacing distributions for full correlation ma-
trix from CML that the effect of finite-time correlation esti-
mate still preserves the pronounced peak ats=1 but often
leads to strong spread in spacings arounds=1. This is shown
in Fig. 8 for CML with a=1.98 ande=0.08. In Fig. 7 we
show the spacing distribution for a particular choice of CML
parameter values which, as pointed out earlier, is not ame-
nable to any analytical treatment in the present framework.
The spread of spacings in the vicinity ofs=1 can be attrib-
uted to finite-time estimate of correlations. Our numerical
experiments with CML indicate that the magnitude of fluc-
tuations due to finite-time estimate of correlation coefficients
may not be related in a straightforward way to the CML
parameters. Thus, the extent of spread arounds=1 in Figs 7
and 8 arises from different magnitude of fluctuations in these
two cases.

VI. TRANSITION TO GOE

The analytical results in the previous sections indicate that
the exact translational invariance and hence the symmetric
banded Toeplitz structure for the correlation matrix leads to a
spacing distribution with a peak ats=1. Numerical results

obtained from full correlation matrices show that the devia-
tions from the expected spacing distribution are caused by
the statistical fluctuations of the matrix elements due to the
finite-time estimate of correlations which effectively break
the translational symmetry. Such deviations are especially
striking in Figs. 7 and 8. As anticipated by Eq.(24) for
geometric decay in correlations, the spacing distribution
peaks in the close vicinity ofs=1. But the numerical distri-
bution is rather broad. Thus, in practice, the results indicate a
tendency to move towards a Gaussian orthogonal ensemble-
like distribution under certain conditions, which we explore
below.

We look at this transition within the scope of the present
study, namely, the diagonally dominant correlation matrix
and the effects arising from inevitable finite-time estimate of
correlations. Under these conditions, we show below that
transition to predominantly GOE like statistics takes place
depending upon the extent to which the translational symme-
try in the correlation matrix is broken. For this purpose, we
construct a correlation matrix from multivariate Gaussian
distributed random numbers with a zero mean and a given
covariances, Gs0,sd. To ensure that the correlation matrix

FIG. 6. Spacing distribution for the truncated correlation matrix
spectra for CML. The solid curve is the Gaussian orthogonal en-
semble(GOE) spacing distribution.

FIG. 7. Spacing distribution of the full correlation matrix spec-
tra for CML. The solid curve is the GOE spacing distribution.

FIG. 8. Spacing distribution of the full correlation matrix spec-
tra for CML. The solid curve is the GOE spacing distribution.
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remains effectively banded, we takesi j =exps−r ui − j ud, where
r is used to control the extent of the correlation tails. In this
experiment, we taker =0.2 and generate random numbers
from n=1000 random variables sampled up top=63105

times, leading to correlation matrix of order 1000. Figure 9
shows the spacing distribution of the random correlation ma-
trix obtained by drawing(a) 300000 samples and(b) 4000
samples. If large number of samplessp@nd are drawn from
Gs0,sd, then the estimated correlations closely approximate
correct correlation values. Thus, the correlation matrix tends
to satisfy the translational invariance more closely. If we
view the finite sampling errors as noise, then we might say
that the amount of noise is less. Thus, in Fig. 9(a) we see that
the spacing distribution is still peaked in the vicinity ofs
=1. We also note that it deviates from GOE curve too. On the
other hand, if the correlation matrix is obtained from fewer
samples(p,n or p,n), then the estimated covariances
could be noisy. For such cases, as the Fig. 9(b) shows, the
spacing distribution closely approximates the GOE distribu-
tion from RMT. This is confirmed quantitatively by a
Kolmogorov-Smirnov(KS) test[17] for goodness of fit with
cumulative GOE distribution. At 15% significance level, a
KS test could not reject the hypothesis that the empirical
distribution in Fig. 9(b) is drawn from GOE. In the case of

empirical distribution in Fig. 9(a), this hypothesis is rejected.
The transition to GOE-like spacing distribution can be

understood along the following lines. In general, any corre-
lation matrix arising from a practical multivariate time-series
data, set, such as in stock market fluctuation, atmospheric
anomalies, medical data, etc., contain signal and a noise
component. If the signal components are removed from such
data sets by subtracting out the dominant principal compo-
nents, then the data set would contain essentially noise com-
ponents. The spectra of such purely noise components would
display qualitative behavior similar to the stochastic pro-
cesses and hence would have spacing distribution with a pro-
nounced peak ats=1. As nontrivial, system-specific correla-
tions, that go to make up the signal component, are added to
the “noisy” system, the eigenvalues change their position and
the spectrum makes a transition towards GOE-like distribu-
tion. This argument, however, does not contradict earlier
works where noisy components of large correlations display
GOE statistics[2]. Thus, the transition to GOE-like spectral
statistics arises from breaking the Toeplitz structure of the
correlation matrix. This has certain practical implications
where the length of the available time series is limited. In
time series data from physical systems that have at least ap-
proximate translational symmetry, the finite-time estimate of
correlations leads to Toeplitz structure being broken. We no-
tice from Figs. 5(b) and 8 that the spacing distribution is
more sensitive to matrix perturbations than the eigenvalue
density. This, then, could lead to incorrect conclusions about
the nature of spacing distribution in practical cases. Hence, it
is important to ascertain if translational symmetry is present
in empirical time series to avoid such pitfalls or alternatively
to obtain very reliable correlation estimates.

VII. DISCUSSIONS AND CONCLUSIONS

We have studied the statistical properties of the correla-
tion matrix spectra and focussed on the limiting cases that
cannot be described by the standard Wigner-Dyson en-
sembles of random matrix theory. We study correlation ma-
trices with entries rapidly decaying away from the diagonal.
From the spectral point of view, this limit corresponds to that
of equally spaced eigenvalues. This is in contrast with the
standard RMT spectral signature of level repulsion. We as-
sume simple models for correlations in a multivariate setting
and obtain results for the eigenvalue density and nearest-
neighbor spacing distribution. For both these quantities, the
qualitative behaviour is different from predictions based on
RMT. These results hold exactly for stationary and transla-
tionally invariant stochastic processes whose correlation ma-
trices have Toeplitz form. All along we compare the theoret-
ical results with the full correlation matrix spectra
constructed from CML dynamics in its spatio temporal cha-
otic regime. The agreement is fairly good though corrupted
by effects of finite-time estimates. In fact, these effects are
more pronounced in the case of spacing distribution than the
eigenvalue density. On the other hand, these anomalies also
provide the connection with the empirical correlation matri-
ces arising from time-series data. We find that GOE-like
spectral statistics arises from breaking the Toeplitz structure

FIG. 9. Spacing distribution of the full correlation matrix spec-
tra from multivariate random variables sampled(a) 63105 times
and(b) 4000 times. See text for details. The solid curve is the GOE
spacing distribution.
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of correlation matrix. We also point out certain pitfalls in
determining the spacing distribution for correlation matrix
spectra from empirical time series. This work also sheds light
on the spectral statistics of space-time chaos. Quite ironi-
cally, the regime of spatiotemporal chaos in multivariate data
is associated with nonRMT behavior.

This work does not provide an RMT based explanation
nor do the results represent an average over some appropriate
ensemble. Essentially we study systematic deviations from
RMT and the treatment is outside the framework of RMT. At
this point, an analogy with the quantum systems could be
called for. The diagonally dominant Hermitian matrices as
operators in quantum mechanics, under certain conditions,
generically show Poisson level spacing distribution. This re-
sult has no counterpart in RMT but has been derived based
on semiclassical analysis[4], which is akin to accounting for
system specific features that remain outside the purview of
RMT. This work represents a similar effort in the context of
spectral statistics of correlation matrix. In recent years, an
ensemble of power-law banded random matrices(BRM) [18]
and their variants[19] such as the diagonally dominant ones
have been considered in the context of metal-insulator tran-
sitions in condensed matter systems. This is a class of GOE
matrices whose variance depends on the distance from the
diagonal while the correlation matrices belong to a class of
Laguerre ensemble. Another motivation for BRMs is to in-
terpolate between GOE and poisson level statistics. How-
ever, the suitability of BRMs for describing the spectral
properties of correlation matrices have not yet been explored.
Such an approach may lead to interesting results within the
RMT approach.

To extend the analogy with quantum systems, the one
dimensional systems like the power law potentials of the
form Vsxd=xn, wheren.0 is an integer, and certain variant
of tight binding models for crystal lattices without disorder
display delta peaked spacing distribution. After unfolding,
these systems display equispaced spectrum like a picket
fence. In a sense, such a spectrum is not considered interest-

ing because it is devoid of any fluctuations. This work shows
that such a spectrum appears in the correlation matrix of
translationally invariant stochastic systems, under certain
conditions. Numerical results from CML show that such a
spectral limit is also exhibited by realistic correlation matri-
ces. As pointed out, certain many body bosonic systems with
k—body interactions carry this spectral signature[16]. How-
ever, an interesting point is that the correlation matrix spectra
is an instance where transition from picket fence spectrum to
GOE-like level repulsion occurs without any associated
change in the dimensions of the system. For example, to see
any transition away from picket fence spectrum, say, in a 1D
quantum system, we need to increase the system dimension-
ality in terms of space or time. On the other hand, the physi-
cally interesting TBMs feature spectral fluctuation transition
between Poisson and GOE.

We believe we have obtained new results on the limiting
behavior of the correlation matrix spectra vis-a-vis random
matrix theory. The assumed symmetric Toeplitz structure is
true strictly for a class of translationally invariant stochastic
systems. However, for real complex systems, an appropriate
approach would be to use random perturbations to Toeplitz
structure. However, at present, random perturbation methods
for the Toeplitz operators does not provide perturbed eigen-
values in closed form yet. Such an approach might provide
useful extension to the results obtained in this work. Another
avenue not completely pursued in this work is the nature of
transition to GOE statistics. In the case of banded Hermitian
matrices[20], the transition from Poisson to GOE is known
to be parameterized byh=b2/N where b is the bandwidth
andN is the size of the matrix. It might be interesting to look
for such scaling in transition statistics.
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