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Recent advances have shown that the empirical correlation matrices of dynamical systems can be modeled
as random matrices, for most part, chosen from an appropriate ensemble of the random matrigRikEry
In this work, we study certain limiting cases where this approach could potentially break down. Using a
combination of analytical and numerical tools, we especially study the eigenvalue density and its spacing
distribution. We show that the correlation matrices obtained from multivariate spatiotemporal timeseries, in a
regime of spatiotemporal chaos, lead to strong deviations from RMT. We illustrate the results with time-series
data drawn from coupled map lattices. We also explore the transition to the RMT regime from the limiting
cases.
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[. INTRODUCTION matrices constructed from such empirical time series carry
The study of spatial correlations in spatially extended,the information contained in the original time-series data in a
complex systems such as economics, weather, social s@faded manner and provide a compact representation for it.
ences, etc., provides us with deeper insight into information' NUS: by applying an RMT based approach, we can identify
and structure generated by their dynamics. However, ifionrandom components of the correlation matrix spectra as
many of the most interesting casas initio models are cur- deviations from RMT prediction$3]. In terms of applica-
rently not established, so that theoretical studies of correlalions: RMT provides another criterion to distinguish between
tions cannot be performed. The alternative is to investigat§'9nal and noise in correlation matrix spectra. .
the properties of observed time-series data, including nu- Even though the previous studies of empirical time series

: ) . : . onfirm the RMT-like universal fluctuations in correlation
merical im f ial correlations. The evaluation of° :
erical estimates of spatial correlations e evaluation Ohatrix spectra, there are evident and relevant limiting cases

: . L . That are not yet explored in this context. For instance, a mul-
Wh'Ch. gives the frgmework for their interpretation. Such Ativariate data set that is perfectly correlated will not display
paradigm is supplied by random matrix thedMT) [1],  RpTjike spectral fluctuations. This question can be treated
which was originally developed for the interpretation of more proadly in terms of eigenvalue spectral fluctuation
nuclear spectra and later on gained new relevance for thgroperties. Within the class of real symmetric matrices, the
understanding of quantum systems whose classical countegigenvalues of correlation matrices can display one of the
part is chaotic. Recently, it was reported from several empirifollowing properties: (i) perfectly correlated eigenvalues,
cal studies that the spectra of correlation matrices, conteading to equally spaced eigenvalugis, completely uncor-
structed from multivariate time-series data, can be modelegelated eigenvalues ari) eigenvalues displaying various
as random matrices chosen from an appropriate ensemble dégrees of correlation, called the “level repulsion” in RMT
the random matrix theory. Such results were demonstrated fanguage. All the studies reported so far of empirical time-
hold in several interesting practical cases such as stoclseries data displaying RMT-like spectral fluctuations, fall in
market fluctuations, ECG data, atmospheric time series, anithe category(iii) above. The first two case€gi) and (ii)]
internet interconnectiong2]. These findings testify the uni- could be thought of as limiting cases where RMT based ar-
versal nature of spectral fluctuations, which underlie theguments could break down. It is in fact known from quantum
RMT line of thinking, in the correlation matrix spectra. chaos literature that the distribution of random level spacing,
The interpretation of the spectra of empirical correlationcoming from completely uncorrelated eigenvalues, cannot be
matrices requires more care than of corresponding matricedescribed by the standard Wigner-Dyson RMT approach but
from, e.g., quantum chaos. In both cases, we would like tas known to be Poisson distributed from semiclassical con-
distinguish between system specific signatures and universalderations[4]. As some properties of the time-series data
features. The former express themselves in the smoothathange, it is possible to go from a limiting case to the RMT
level density, whereas the latter are represented by the fludomain characterized by level repulsion or vice versa.
tuations around this smooth curve. In time-series analysis, In this paper, we will examine the limiting case corre-
the matrix elements are subject to uncertainty such as meaponding to perfectly correlated eigenvalues of the correla-
surement noise on the time-series data, but also statisticibn matrix and explore under what circumstances transition
fluctuations due to finite sample effects. When characterizingp RMT-like spectral fluctuations take place. In answering
time-series data in terms of RMT, we do not want to characthis question, we are also led to another interesting problem
terize these trivial sources of fluctuations which are presendf the spectral signature of spatiotemporal chaos. In all the
on every data set, but we aim at the extraction of featureprevious works that consider spectra of correlation matrices
which would be shared by an infinite amount of data withoutfrom empirical time serief2], it is not known with certainty
measurement noise. The eigenfunctions of the correlatioif those data are chaotic or not. Thus, the spectral manifes-
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tations of spatiotemporal chaos remain relatively unexploredcan tune the dynamics for desired spatial correlation proper-
To study both these questions, we assume simple models fties, many of which have already been studied and reported
correlation matrices which can be manipulated analytically{7]. We consider the class of diffusively coupled map lattices
to a certain extent. Further, we use coupled map latticeg one dimension with sites=1,2, ... n’ of the form

(CML) that have emerged as one of the paradigms of spa-

tl(_)tempo_ral dynam|c_s, to generate multivariate time series Yha= (1= of(y) + [F(y*H + f(yi )], (3)

with desired properties. Thus, this effort represents an at- 2

tempt to understand the conditions under which RMT model o2 -
for correlation matrix spectra will break down and to Iook%vheref(y)—l ay” is the local logistic map controlled by the

: hparametela. The parametee is a measure of coupling be-
for any alternative ways to understand such spectra. On the . ) . -
tWeen nearest-neighbor lattice sites. We choose periodic

other hand, various dynamical regimes of CMLs might beboundary conditionsx(n+1)=x(1). In order to eliminate

distinguishable in terms of the properties of their correlationb q ffects f lati i truct
matrix spectra. This will contribute to the understanding the ounadary €fiects from our corréfation matrices, we construc

spatiotemporal dynamical features in terms of its correlatior%he_m from the_ sublattice e [20,n’ ~20)]. If the spapal tWO'_

matrix spectra. In the following section, we will introduce point correlations decay very fast, a lattice point 20 sites

the coupled map lattice and the correlation matrix formalism@Way from the boundary can be supposed to be insensitive

to the boundary conditions. For the numerical computa-

tions reported in this paper, the CML withh =500 and

Il. CORRELATIONS IN COUPLED MAP LATTICES hence a sublattice size=460 was chosen and iterated,

starting from random initial conditions, far=5x 10’ time

) ) _ steps, after discarding 1@ransient iterates.

Consider a time series of the forml(x,t), where x As the parametera and e are varied, the spatiotemporal
=1,2,.. pandt=1,2,... p denote the discretized space and map displays various dynamical features such as frozen ran-
time, respectively. In this, the time series at every spatialjom patterns, pattern selection, space-time intermittency, and
point is treated as a different variable. We define the normalspatiotemporal chaog]. Since we intend to study limiting

A. Correlation matrix

ized variable as cases of strongly diagonally dominant correlation matrices,
/ o the interesting CML dynamics is found in the regime of spa-
_Z' (%) —(Z'(x) : :
z(x,t) = ——————, (1)  tiotemporal chaos, where correlations are known to decay
o) rather quickly as a function lattice sites.
where the bracket§) represent temporal averages ar(c)
the standard deviation af at positionx. Then, the equal- [ll. CORRELATION MATRIX MODEL

time cross-correlation matrix that represents the spatial cor- - .
. . A. Tridiagonal matrix model
relations can be written as
_ . L By definition of uncorrelatedness, the correlation matrix
S =(Z(X,0)z(X', 1), xx'=1,2,..n. (2)  of a'sequence of uncorrelated random variables is a diagonal
matrix [8]. Here, we consider dynamics of CML correspond-

The correlation matrix is symmetric by construction. In ad-. . ; ) :
pg to spatiotemporal chaotic regime where the spatial corre-

dition, a large class of processes are translationally invariar1 4 ! ) :
and the correlation matrix can contain that additional sym-aton decays fairly sharply ensuring that the correlation ma-

metry, too. We will use this property for our correlation trix Is strongly dlagonally dommapt. _In this context, we get
for the empirical correlation matrix, in the limit ds-«, a

models in the context of CML. In time-series analysis, the ic banded o wh bandwidth d d h
averages-) have to be replaced by estimates obtained fronpYMmetric banded matrix whose banawidth depends on how

finite samples. As usual, we will use the maximum likeli- qwc_kly the spatla_l correlatlpns decay o zero. .
hood estimatesia(t)) = 1/ p=L, a(t). These estimates con- First, we consider the simplest tridiagonal matrix model

tain statistical taint hich di o 1d corresponding to extremely fast decay of correlations.
ain statistical uncertainty, which disappears o oo, € Hence, the correlation matrix of order1 has the following
ally we requirep>n to have reasonably correct correlation form

estimates.

B. Coupled map lattices

(4)

o T BB
T T
= T O
T O O

The concept of CML was introduced as a simple model
capable of displaying complex dynamical behavior generic
to many spatiotemporal systems and has been extensivelg/‘, . o N o o
studied in the last 20 yeaf§]. CMLs have discrete time and Since a correlation matrix is a positive semidefinite matrix, it
space, labeled byandi, respectively, in Eq(3), but a con- 1S required thab< 1/_2 in order forX to be a proper model
tinuous state space. Many spatiotemporal phenomena coufd & correlation matrix. _
be modeled by CML dynamic§6]. In this work, we use The eigenvalues ok are given by
CMLs as a source of multivariate spatiotemporal data with o_ : C _
required properties. They can be easily created numerically N =1+Dcodjrin), =12, n-1). ®)
by simple iteration. By a change of system parameters w&he eigenvectors are
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1.2 ‘ ‘ ‘ Toeplitz matrix, given in Eq(4). But, XP is the Hamiltonian
for TBMs without disorder that account for longer range site
to site interactions. Later we will see that the spectral fluc-
tuation properties ofXP strongly resemble those of one-
dimentional (1D) quantum systems. To the best of our
knowledge, no closed form solutions are known for the ei-
genvalues of symmetric Toeplitz matrix, beyond those with
tridiagonal structurd10]. To estimate the eigenvalues, we
use the standard Rayleigh-Schrodinger perturbation theory in
quantum mechaniddl1] in a straightforward way to obtain
the perturbed eigenvalues. The tridiagonal maXiis taken
as the unperturbed “system” whose spectrum is exactly
0 100 200 300 400 500 known. The perturbation matriY is similar toXP but with

i its principal tridiagonal entries set to zero, such tK8EX

. . . _ +V. Then the perturbed eigenvalues, to first order, can be
FIG. 1. Numerically determined eigenvalues of the correlationgptained from

matrix for CML time-series data wita=2.00 ande=0.08 (dashed
curve). The solid curve is the analytical result of the tridiagonal

0.9

0.8

Kiv/1, K
model, Eq.(5) with b taken as the average of the first off-diagonal A= (wilV[v}) 7)
elements of the CML matrixp=0.022. ] Ci '

v}‘: sinkj@/n), k=1,2,...(n-1), whereC; is the normalization constant
wherek labels the eigenvector components. As shown in Fig. o
1, the spectrum of a full correlation matrix from CML dy- C = n-1 cosjm sin(n-1u] )
namics for very small coupling strengthand large param- ! 2 2 sinu '

etera can be approximately modeled by this relation. This
figure illustrates that the full correlation matrix is effectively fare and in the following we us€u=jm/n) and cosjm
tridiagonal in nature, where the particular structurexofe-
flects the translational invariance of the CML dynamics. Theb
disagreement between the numerical CML eigenvalues and’
Eq. (5) has two sources, namely, the finite-time series length

)\-1:)\?+% (n—3)cos U—

=(-1)l. The perturbed eigenvalues, to first order, are given

leading to statistical fluctuations of the CML matrix ele- (=i)lsin{(n-3)u]
ments, and the fact that the correlation matrix from CML is ] ! sinu
not exactly tridiagonal. -

—i)isin(n-4)u |
+ &2 (n—4)cos 31—().#
Gl sinu
B. Perturbed matrix model e r (= isin(n - 5)u_
In order to analyze a more realistic situation, we intend to + C. (n-5)cos 4 - sinu
. : - 1
allow more off-diagonal entries. We hence perturb the tridi- _ . Z
agonal matrix of orden—1 by adding four more off diago- 21 _ (=)'sin(n-6)u
nals, such that with b, €, €,, €3,6,=0: * C _(n 6)cos W sinu ) (©)

1 b €1 € €3 €y 0

Note that ase;, €, €3,€,— 0, we recover the correct unper-
turbed eigenvalues. Another important condition is that
XP=l'ee b 1 b & € e - |. (6 b e, e, e,e<1,inorder for the matrix to be in the pertur-

& € b 1 b - oo e bative regime. Second, there are further conditions on these
parameters needed to guarantee the positive semidefiniteness
of the correlation matrix. The fact that théh perturbed ei-

This is just the banded version of the well known symmetricgenvalue depends on a single integerapart from other
Toeplitz matrix, which arises as the covariance matrix in thequantities independent gf gives the clue that the system
study of stationary and translationally invariant stochastiaepresented by the matrix in E€p) is, in a sense, similar to
processes such as moving average processes, autoregressime-dimensional problems like the harmonic oscillator in
processes, and harmonic procegddsThis matrix structure quantum mechanics, as far as the spectral properties are con-
is also reminiscent of a variant of the one dimensional tightterned. Later we will see that it helps to keep this analogy in
binding lattice model$TBM) without disorder in condensed mind since the spectral fluctuation propertiesXdf strongly
matter physicq9]. In typical tight binding models, often resemble those of 1D quantum systems.

nearest neighbor hopping is considered. This is equivalent to It is straightforward to obtain the asymptotic form for the
the tridiagonal model, essentially a symmetric tridiagonalperturbed eigenvalues. They are, for 1,

b 1 b €1 €x €3 €y

€& € € ‘'

056102-3



M. S. SANTHANAM AND H. KANTZ PHYSICAL REVIEW E 69, 056102(2004

0.4 In many cases where correlation matrices are constructed
| | from experimgntal time series, the spectrum is characterizgd
;‘ M‘w\“*‘“ a‘\A o by a few dominant and a large number of less-dominant ei-
j02 | 1 A‘\‘N‘\I‘JM‘MW ‘Y" genvalues. In contrast to that, the eigenvalue curves in Figs.
\ | JM“ }‘ ‘ 2 and 3 do not have this feature, indicating that the spectral

|

4l
| 1

|
,M‘\
I

1 ' Wy gl MJ“; | “"f'JJ‘“‘* r M | properties could be different from that of a generic correla-
dl ‘u‘\;;;'\ﬂ\"\l““‘)”\d’w“\[‘v\'w; Jrvhhw,',f\”;u,“W‘m}*wm‘\@‘4‘;“"\"\ ) T tion matrix. It is important to note that even though EL0)
or o is strictly valid for correlations as— =, we see that it is
| (@) _ | reasonably accurate even for correlations estimated from
- finite-time CML dynamics. However, as we will see later, the
A1 i _ i finite-time estimate of correlations lead to transitions in spec-
T _— 1 tral statistics, especially in case of spacing distributions.
08 - ——
0.6 | ‘ ‘ ] IV. EIGENVALUE DENSITY
0 100 200 ; 300 400 500

' We will look at two quantities that have been studied in

FIG. 2. (@) Numerically obtained eigenvalues of a correlation the context of applying RMT methods to time-series corre-
matrix for a CML with a=1.98 ande=0.08 (dashed line, almost lations. The first of them is the eigenval(evel) density, the
invisible). Solid curve: analytical eigenvalues in Ed.0) with b second the level spacing distribution.
=0.127 £,=0.025 £,=0.0023 of the matrixP, where the numeri- Let N(\) be the integrated eigenvalue density which gives

cal values of the parameters were chosen according to the CMihe number of eigenvalues less than a given valu&hen,

and analytical eigenvalues.
dN(A
4 din) = % (11
N=A2+2 X g cogk+Du. (10)
k=1

This can be obtained assuming random correlation matrix

) ) . [14] and is found to be in good agreement with the empirical
In the regime of strong spatiotemporal chaos of CML, thisijme_series data from stock market fluctuatigas].
relation provides an estimate for the eigenvalues of large

correlation matrices. In Figs. 2 andaB we show how well
the analytical result in Eq(10) fits the numerically calcu-
lated eigenvalues of full correlation matrix with specified In this case, the eigenva|ue density can be exact]y worked
CML parameters. We see that because of the effectivelyyt as follows. From Eq(5) we obtain

banded nature of the correlation matrix, the agreement with

A. Tridiagonal case

Eq.(10) is very good. The percentage error, shown in Figs. 2 n -1
and 3b), between numerical eigenvalues and those given by N(\) =— COS_l( b ) (12)
Eq. (10) shows that the matrix in Eq6) is a fairly good m
approximation to the effectively banded correlation matrix,.l.hen the normalized level density is given by
as far as the eigenvalues are concerned. '
1
1 . . d(\) = — (13)
L b i ==
0.8 (o) ' ‘ 277b\/1 ( - )
AL 0.6 \‘ \i“\‘)’w“ﬁ’v‘“‘” }}P\
i 0.4 h\ Il “‘\“‘JL‘\‘ M “4"‘»"‘«‘\ ‘1‘,’“\,"3{ o where 1-b<\<1+2b, where the full interval is only ex-
0.2 ﬁ“t{“‘ ‘W‘\“ﬁ"\“ Hﬂ‘ 1 | \\” “‘"‘w *I "‘Ls}w ’ J‘mftw}h » ) plored if thg rank of matrixn— « [see Eq_(5)]. Note that the
' y\\x;\||&v”uﬁ‘.‘\ ! ’L‘m}“ \"‘ﬂ" l [ 1‘\‘{ u"m“‘”‘h W e level density has peaks of equal magnitude at both the ends
0 = ! e of the spectrum. Figure 4 shows that the analytical result in
(@) //// Eq. (13) is a fairly good approximation to the numerically
15 _ | obtained eigenvalue density of the full correlation matrix for
o1 /// i CML data. The discrepancy between the two can be attrib-
/ - uted to the effect of nonzero elements in the full correlation
0.5 | Q///// A matrix, as opposed to tridiagonal matrix assumed by the
— theory, and to the finite-time estimate of correlations. The
0 0 100 200 ; 300 400 500 maximal (\,) and minimal(\_) eigenvalue\,~1+2b, for

largen, agree well with the range of eigenvalues which we
FIG. 3. The same as Fig. 2 for different CML parameters, find for the chosen CML dath=0.0775, as one carisually
=1.95 ande=0.2. verify from Fig. 4.
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FIG. 4. Level density of spectra from the full correlation matrix 0.7 0.9 M 1.3
for CML data with a=2.0 ande=0.05. The dotted curve is the
numerical result, while the solid curve represents @&). FIG. 5. Level density of the correlation matrix for CML with)
a=1.95 ande=0.2(b) a=1.98 ande=0.08. The solid curve i) is
B. Beyond tridiagonal: Perturbed matrix the analytical level density obtained from Ea48).
For a general perturbed matrix, it is not straightforward to 1 1-b?

obtain the integrated level density exactly. However, under dp(M) = 2 b A2 (—1+b2+ (1 +b) N2
certain constraints and approximations, we can obtain a \/ 1- 5%

closed formula. Further in this direction, we treat the special 4 b7\
case, namely, geometric decay of correlations away from the (18

principal diagonal of the correlation matrix. We compare this result with the numerical level density from

) ) the full correlation matrix spectra of CML foa=1.98, €

1. Geometric decay of correlations =0.08. For this case, we haveb=0.128¢,=0.025¢,

; ; =0.0023 £3=0.0008, vhich roughly follow the assumption
Corrvgafit:r:tsvgghthi?'(lo) and assume a geometric decay Ofmade in Eq.(14). As Fig. 5b) shows, the agreement is
fairly good, justifying the assumptions made in obtaining
el B this relation.

en~b""% m=1,...4. (14) We notice that level density and is peaked at the edges of
the spectrum though the magnitudes of peaks at both the
By the transformatiorp™1=¢/°9 bm, we see that this rep- ends of the spectrum are not equal. The numerical result
resents an exponentially decaying case. Invoking the fadlisplayed in Fig. Ea) for CML data with larger nearest-
that e, <1, we approximate,; from Eq.(10) in following neighbor coupling has a qualitatively similar level density as

way th_e one predic_:ted by Eq_'LB). A qugntitative comparison
with the analytical result is not possible because the correla-
o tion coefficients do not decay in any obvious geometric
N=1+ 22 b™ cosmu. (15) sense, i.e., grossly violate the assumption in @d). It is

clear that as the coupling strength in CML is increased, the
lattice sites get strongly coupled which is reflected in the
Note that, for convenience, we have dropped the superscriﬁﬁ”elgt'on co%fﬂc:jenés that do ?Ot declay. fast enough. ':'hus,
on \. The summation on right-hand side yield] the effective banded nature of correlation matrix is lost.
Since numerically we have only the finite-time estimates of
5 correlations, we tend, at least qualitatively, towards the limit
- 1-b of random matrix level density. This is evident from the fact
A 5 (16) . .
1-2bcosu+b that the asymmetry of the peaks in the level density gets
further pronounced as coupling strength is increa®en-
Then, under this approximation, the integrated level densitpare the Figs. 4 and 5. We recall that the random matrix level
is given by density forp>n has a pronounced peak only at the lower
end of the spectrurfil4].

m=1

2. Eigenvalue bounds

From the integrated level density in Ed.7), we can draw
an important, though approximate, conclusion on the bounds
Now the normalized density of states can be determined tof the eigenvalues of the correlation matrix under consider-
be ation. Forn>1, when the condition

()\(b2+ 1)+b2—1>

n
N(\) = — cos?
() 2b\

ks

17)
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NP2+ 1)+b%-1 fects that arise from dynamics of “real” systems. Our work
(T) ~=*1 (19 with CML indicates, at a qualitative level, that the spacing

distribution is more sensitive to eigenvalue perturbations

is met, then approximately the integrated level density attainghan the level density. Hence, we compare the spacing distri-
extremal values. We obtain the following relation for maxi- bution results with those determined numerically from CML

mum (\,) and minimum(\_) eigenvalue dynamics for(i) a truncated correlation matrix in which cer-
1—-p2 tain effective number of off-diagonal elements are retained
L= (20) and the rest set to zerg@ij) the full correlation matrix. The
5 (1£h)? spectra of the truncated correlation matrices will allow us to

verify the ideally expected spacing distribution while the full

which implies the interesting result that matrix will illustrate the real scenario.

1
N = —. (21)
A A. Tridiagonal matrix
The correlation matrix spectra for CML lattice data wih Taking the cue from the analogy of the correlation matrix

=1.98 ande=0.08 have maximal and minimal eigenvalues with one-dimensional quantum systems, we expect the spec-

to be 1.3097 and 0.7904, approximately fulfilling the trum to display constant level spacing and its distribution to

above relation. This can also be verified in Figbp This  be strongly peaked &=1. In our approximate scheme, this

line of analysis allows us to understand the level densityesult arises easily, since the average part of integrated level

of correlation matrices with rapidly decaying correlations. density is,NaUg()\f):N()\?). The unfolded spectrum then fol-

Unlike the spacing distribution to be studied in the follow- [ows from Eq.(12),

ing section, the eigenvalue density is not, in general, ex- o

pected to display universal behavior. But we expect our E;=Nayg(\)) =NO\)) =), j=1,2,...(n=1). (23

approach and the eigenvalue density relations to holey g the spacings are uniformly unity and the spectrum will

good for the case of rap|FjIy falling correla_tlons, which is p5ve spacing distribution peaked st1. The system does

a general feature of spatiotemporal chaotic systems. 4t show any fluctuation in eigenvalue spacings. When nu-
merically performed with CML data, we obtain a pro-

V. SPACING DISTRIBUTION nounced peak at=1.0.

In this section we investigate the nearest-neighbor eigen-
value spacing distribution, widely studied in the context of B. Perturbed matrix
random matrix theoryl]. The eigenvalue spacingsare de-
fined as the differences between the successive eigenvalues,
s=E;.1—E;, whereE; is the unfolded eigenvalue. The un- In this case, we are not able to perform the unfolding
folding procedure expresses the spacings in terms of locanalytically for a general case. However, for the special as-
mean spacing. The spectrum is unfolded in order to have aumption made in Eq.14), the unfolding procedure is car-
uniform scale leading to mean spacing of unity so that theaied out by substituting the eigenvaldén Eq.(17) from Eq.
spacing distribution from various systems can be comparedl6). Then, we obtain from simple manipulation
on an equal footing.

To unfold the spectrum, we note that the integrated level E: =N(\)= nu_ i (24)
density is a sum of average part plus an oscillating part, ) oon

written as,N(A) = No,g(A) + NosdA). A similar expression can Thus, for the case of perturbed matrix that follow the as-

be written for thg level densitgi(\), too. Then, the unfolded sumption in Eq.(14), the spacing distribution is peaked at
levels are obtained ag=Ng4(\). In fact, for a general -1 The numerical results indicate that this is true in gen-
spectrum which is a function of a single integéquantum g4 jrrespective of the nature of correlations decay. First, we
number) and\ =0, the exact average level density for the consider the CML correlation matrix spectra for 1.98 and
nondegenerate case can be formally written dowfilak €=0.08, vhere we have retained five principal oOff-
dag\) = IN'(V)]. (22) diagonals and set the rest to zero_since the_ mz_ignitude of
these elements was less tham® (O his truncation is done
Thus, we note that Eq17) actually is the average part of the to enforce “ideal” conditions, that closely approximate the
integrated level density. Since we have the analytical form ohssumptions made to obtain theoretical results. For the
the average integrated level dendityr), we can unfold the empirical correlation matrix from CML, we unfold its
spectrum analytically. spectrum and determine the spacing distribution numeri-
Our analytical framework does not account for the finite-cally.
time estimate of correlations. The statistical fluctuations As shown in Fig. 6, the spectrum in this case displays a
break the translational invariance, to smaller or larger exstrong peak as=1 quite in agreement with the analysis done
tents, in practice. Second, inspite of spatiotemporal chaosbove. We also note that the effect of finite-time estimation
the spatial correlations in CML do not monotonously decayof correlations manifests itself in the form of spread of spac-
to zero. Thus, the numerical spectra always contain such efag distribution arounds=1. Thus, this spacing distribution

1. Truncated correlation matrix
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5 3
1 2=1.98 €=0.08 ] a=1.95 £=0.2
4 |
2
3 1 P(s)

0 1 2 3

3 FIG. 7. Spacing distribution of the full correlation matrix spec-
S tra for CML. The solid curve is the GOE spacing distribution.

FIG. 6. Spacing distribution for the truncated correlation matrix . ) ) )

semble(GOE) spacing distribution. tions from the expected spacing distribution are caused by
the statistical fluctuations of the matrix elements due to the
finite-time estimate of correlations which effectively break

could be thought of as the counterpart of “integrable” limit the t lational trv. Such deviati all
for correlation matrices. This is also characteristic of the' ¢ ransiational symmetry. Such deviations are especially

spectra of one dimensional quantum systems that are e)§_tr|k|ng In Figs. 7'and 8. AS. anticipated by qu‘.l) f_or .
tremely rigid. This is known to occur in a many body Systemgeometrlc decay in correlations, the spacing distribution

of bosons described bytbody interactions and is understood pea_lks in the close vicinity O‘iﬁ.zl' BUt. the numerical _dls_tn-
in the framework of embedded Gaussian ensemidls bution is rather broad. Thus, in practice, the results indicate a
tendency to move towards a Gaussian orthogonal ensemble-

like distribution under certain conditions, which we explore
C. Full correlation matrix below.

The CML correlation matrix estimated from finite-time Ve look at this transition within the scope of the present
dynamics can also be thought of as a case of translationgfudy, namely, the diagonally dominant correlation matrix
invariance being broken. Thus, the spacing distribution ofand the.effects arising from |nev!t§1ble finite-time estimate of
full correlation matrix could behave differently from the correlations. Under these conditions, we show below that
ideal cases we consider to obtain analytical results. We shof@nsition to predominantly GOE like statistics takes place
from numerical spacing distributions for full correlation ma- deépending upon the extent to which the translational symme-
trix from CML that the effect of finite-time correlation esti- Iy in the correlation matrix is broken. For this purpose, we
mate still preserves the pronounced peals=al but often construct a correlation matrix .from multivariate Gauss_lan
leads to strong spread in spacings arosad. This is shown distributed random numbers with a zero mean and a given
in Fig. 8 for CML with a=1.98 ande=0.08. In Fig. 7 we covarianceo, G(0, o). To ensure that the correlation matrix
show the spacing distribution for a particular choice of CML
parameter values which, as pointed out earlier, is not ame- 1.5
nable to any analytical treatment in the present framework. 2=1.98 €=0.08
The spread of spacings in the vicinity s£1 can be attrib-
uted to finite-time estimate of correlations. Our numerical i
experiments with CML indicate that the magnitude of fluc- 1 M
tuations due to finite-time estimate of correlation coefficients P(s)
may not be related in a straightforward way to the CML P
parameters. Thus, the extent of spread arcemil in Figs 7 I ‘ L
and 8 arises from different magnitude of fluctuations in these 05 / |
two cases. /

The analytical results in the previous sections indicate that %0 1 s 2 3
the exact translational invariance and hence the symmetric
banded Toeplitz structure for the correlation matrix leads to a FIG. 8. Spacing distribution of the full correlation matrix spec-
spacing distribution with a peak at1. Numerical results tra for CML. The solid curve is the GOE spacing distribution.

VI. TRANSITION TO GOE (
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1.5 empirical distribution in Fig. @), this hypothesis is rejected.
@) The transition to GOE-like spacing distribution can be
understood along the following lines. In general, any corre-
lation matrix arising from a practical multivariate time-series
1+ _ . data, set, such as in stock market fluctuation, atmospheric
H anomalies, medical data, etc., contain signal and a noise
P(s) AU component. If the signal components are removed from such
g \ data sets by subtracting out the dominant principal compo-
nents, then the data set would contain essentially noise com-
ponents. The spectra of such purely noise components would
display qualitative behavior similar to the stochastic pro-
cesses and hence would have spacing distribution with a pro-
nounced peak a&=1. As nontrivial, system-specific correla-
3 tions, that go to make up the signal component, are added to
the “noisy” system, the eigenvalues change their position and
1 ‘ : the spectrum makes a transition towards GOE-like distribu-
tion. This argument, however, does not contradict earlier
(b) works where noisy components of large correlations display
0.8 _ 0 GOE statistic§2]. Thus, the transition to GOE-like spectral
t N statistics arises from breaking the Toeplitz structure of the
06 - / 1 correlation matrix. This has certain practical implications
P(s) v_vhere the length of the a\_/ailable time series is limited. In
time series data from physical systems that have at least ap-
04 proximate translational symmetry, the finite-time estimate of
b correlations leads to Toeplitz structure being broken. We no-
0.2 | ¢ ; tice from Figs. Bb) and 8 that the spacing distribution is
H (ﬁ more sensitive to matrix perturbations than the eigenvalue
t + . density. This, then, could lead to incorrect conclusions about
0 1 P 3 the nature of spacing distribution in practical cases. Hence, it
s is important to ascertain if translational symmetry is present

FIG. 9. Spacing distribution of the full correlation matrix spec- in empirical time series to avoid such pitfalls or alternatively

tra from multivariate random variables sampl@l 6 X 10° times to obtain very reliable correlation estimates.
and(b) 4000 times. See text for details. The solid curve is the GOE

spacing distribution. VII. DISCUSSIONS AND CONCLUSIONS

remains effectively banded, we takg=exp(-r|i-j|), where We have studied the statistical properties of the correla-
r is used to control the extent of the correlation tails. In thistion matrix spectra and focussed on the limiting cases that
experiment, we take=0.2 and generate random numberscannot be described by the standard Wigner-Dyson en-
from n=1000 random variables sampled up §j66x10°  sembles of random matrix theory. We study correlation ma-
times, leading to correlation matrix of order 1000. Figure Strices with entries rapidly decaying away from the diagonal.
shows the spacing distribution of the random correlation mafFrom the spectral point of view, this limit corresponds to that
trix obtained by drawinga) 300000 samples ang) 4000  of equally spaced eigenvalues. This is in contrast with the
samples. If large number of samplgs>n) are drawn from  standard RMT spectral signature of level repulsion. We as-
G(0, o), then the estimated correlations closely approximatesume simple models for correlations in a multivariate setting
correct correlation values. Thus, the correlation matrix tendand obtain results for the eigenvalue density and nearest-
to satisfy the translational invariance more closely. If weneighbor spacing distribution. For both these quantities, the
view the finite sampling errors as noise, then we might sayualitative behaviour is different from predictions based on
that the amount of noise is less. Thus, in Figa)9ve see that RMT. These results hold exactly for stationary and transla-
the spacing distribution is still peaked in the vicinity ef tionally invariant stochastic processes whose correlation ma-
=1. We also note that it deviates from GOE curve too. On therices have Toeplitz form. All along we compare the theoret-
other hand, if the correlation matrix is obtained from fewerical results with the full correlation matrix spectra
samples(p<n or p~n), then the estimated covariances constructed from CML dynamics in its spatio temporal cha-
could be noisy. For such cases, as the Fitp) 8hows, the otic regime. The agreement is fairly good though corrupted
spacing distribution closely approximates the GOE distribuby effects of finite-time estimates. In fact, these effects are
tion from RMT. This is confirmed quantitatively by a more pronounced in the case of spacing distribution than the
Kolmogorov-SmirnouKS) test[17] for goodness of fit with  eigenvalue density. On the other hand, these anomalies also
cumulative GOE distribution. At 15% significance level, a provide the connection with the empirical correlation matri-
KS test could not reject the hypothesis that the empiricates arising from time-series data. We find that GOE-like
distribution in Fig. 9b) is drawn from GOE. In the case of spectral statistics arises from breaking the Toeplitz structure

0
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of correlation matrix. We also point out certain pitfalls in ing because it is devoid of any fluctuations. This work shows
determining the spacing distribution for correlation matrixthat such a spectrum appears in the correlation matrix of
spectra from empirical time series. This work also sheds lightranslationally invariant stochastic systems, under certain
on the spectral statistics of space-time chaos. Quite ironieonditions. Numerical results from CML show that such a
cally, the regime of spatiotemporal chaos in multivariate datspectral limit is also exhibited by realistic correlation matri-
is associated with nonRMT behavior. ces. As pointed out, certain many body bosonic systems with
This work does not provide an RMT based explanationk—body interactions carry this spectral signat{k6]. How-
nor do the results represent an average over some approprid@eer, an interesting point is that the correlation matrix spectra
ensemble. Essentially we study systematic deviations frons an instance where transition from picket fence spectrum to
RMT and the treatment is outside the framework of RMT. At GOE-like level repulsion occurs without any associated
this point, an analogy with the quantum systems could behange in the dimensions of the system. For example, to see
called for. The diagonally dominant Hermitian matrices asany transition away from picket fence spectrum, say, in a 1D
operators in quantum mechanics, under certain conditiongjuantum system, we need to increase the system dimension-
generically show Poisson level spacing distribution. This re-ality in terms of space or time. On the other hand, the physi-
sult has no counterpart in RMT but has been derived basechlly interesting TBMs feature spectral fluctuation transition
on semiclassical analysjg], which is akin to accounting for between Poisson and GOE.
system specific features that remain outside the purview of We believe we have obtained new results on the limiting
RMT. This work represents a similar effort in the context of behavior of the correlation matrix spectra vis-a-vis random
spectral statistics of correlation matrix. In recent years, ammatrix theory. The assumed symmetric Toeplitz structure is
ensemble of power-law banded random matri@RM) [18]  true strictly for a class of translationally invariant stochastic
and their variant$19] such as the diagonally dominant ones systems. However, for real complex systems, an appropriate
have been considered in the context of metal-insulator tranapproach would be to use random perturbations to Toeplitz
sitions in condensed matter systems. This is a class of GO&ructure. However, at present, random perturbation methods
matrices whose variance depends on the distance from tHer the Toeplitz operators does not provide perturbed eigen-
diagonal while the correlation matrices belong to a class ofialues in closed form yet. Such an approach might provide
Laguerre ensemble. Another motivation for BRMs is to in-useful extension to the results obtained in this work. Another
terpolate between GOE and poisson level statistics. Howavenue not completely pursued in this work is the nature of
ever, the suitability of BRMs for describing the spectral transition to GOE statistics. In the case of banded Hermitian
properties of correlation matrices have not yet been explorednatrices[20], the transition from Poisson to GOE is known
Such an approach may lead to interesting results within théo be parameterized blg=b?/N whereb is the bandwidth
RMT approach. andN is the size of the matrix. It might be interesting to look
To extend the analogy with quantum systems, the onéor such scaling in transition statistics.
dimensional systems like the power law potentials of the
form V(x)=x", wheren>0 is an integer, and certain variant
of tight binding models for crystal lattices without disorder = One of us(M.S.S) thanks Henning Schomerus for some
display delta peaked spacing distribution. After unfolding,useful discussions. M.S.S. also thanks William Trench and
these systems display equispaced spectrum like a pické&tenneth Driessel for pointing out certain aspects of solutions
fence. In a sense, such a spectrum is not considered intereftr Toeplitz matrix eigenvalue problem.
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